
Chapter 1

Introduction

1.1 Definition and Terminology

Definition 1.1.1. Differential equation (DE.) is an equation involving the deriva-
tive of a unknown function. For example,

dy

dx
= 3x

or
y′ − 2xy = 2.

Classification by type

If an equation contains one independent variable, it is said to be an ordinary
differential equation (ODE). Examples are

y′ = x, y′′ + 2xy = 1,

or
xy′′ = y sinx, y′ = cos xy + ex

The position of a particle of mass m moving along a straight line is denoted by
u(t), the force acting to it is F (t, u(t), u′(t)), then

mu′′(t) = F (t, u(t), u′(t)). (1.1)

On the other hand, if an equation contains more than one independent variable, it
is said to be a partial differential equation (PDE). Examples are the potential
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equation

∂2u

∂x2
+

∂2u

∂y2
= 0

or the heat equation

∂u

∂t
= k

∂2u

∂x2

or the wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0.

Classification by order

y′, y′′, · · · , y(n) are called first order, second order, · · · , n-th order derivative. The
highest such number is called the order of a differential equation.

(1) 1-st order DE.

y′ = x+ y

(1 + x2)y′ + y2 = 1

(y′)2 = y2 + 1.

(2) 2-nd order DE.

y′′ + 3y′ + 2y = 0

y(y′′)2 + ky + 1 = 0.

(3) n-th order DE.

y(n) + p1(x)y
(n−1) + · · · pn(x)y = r(x) . (1.2)

Usually an ODE is given in the following implicit form:

F (x, y, y′, · · · , y(n)) = 0. (1.3)

Under certain condition, we can solve it for the highest order term y(n):

y(n) = f(x, y, y′, · · · , y(n−1)) . (1.4)

This is called a normal(standard) form.
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Classification by linearity

If the equation is linear in y, y′, y′′, etc., then we say it is linear differential
equation. Otherwise, it is a nonlinear differential equation. Examples of
linear differential equations are

y′′ = −y, x2y′ = xy − 1,
dy

dx
= F (x)y.

Examples of non-linear differential equations are

(y′)2 + 1 = y, yy′ = x+ 1 y′ = x+ cos(y) + 1.

A first order linear differential equation is sometimes written as a differential
form

M(x, y)dx +N(x, y)dy = 0.

Example 1.1.2 (Differential form of a 1st order ODE).

(x2 + 1)y
dy

dx
+ y − sinx = 0

Multiplying it by dx we obtain the differential form

(y − sinx)dx+ (x2 + 1)ydy = 0

Solution

Definition 1.1.3. A function φ defined on an interval I and having at least
n derivatives which are continuous on I is called a solution of the differential
equation if it satisfies a given differential equation.

For example, φ is a solution of the ODE F (x, y, y′, · · · , y(n)) = 0 if

F (x, φ(x), φ′(x), · · · , φ(n)(x)) = 0.

Example 1.1.4 (Families of solution). The function y = c1e
−x + x − 1 is the

solution of ODE
y′ + y = x.

It is called a one-parameter family of solutions. A solution free of parameter
is called a particular solution. y = x − 1 is the particular solution of DE
y′ + y = x.

The function y = c1e
x + c2xe

x + x2 − 2 is the solution of ODE

y′′ − 2y′ + y = 4x

for any constants c1, c2. These are two parameter family of solutions.
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Interval of definition

Or domain of definition.

Definition 1.1.5. Implicit solution, Explicit solution of the differential
equation. Any function given by the relation of the form G(x, y) = 0 is an
implicit function.

Example 1.1.6 (Implicit solutions). Consider the ODE xdx + ydy = 0. The
function x2 + y2 = 25 is an implicit solution.

Singular Solutions

Example 1.1.7 (Piecewise defined solutions). Consider ODE xy′ = 4y. y = cx4

is a one-parameter family of solutions in the interval (−∞,∞) but you may
consider a piecewise defined solution

y =

{

−x4, x < 0

x4, x ≥ 0

This solution cannot be obtained by a single choice of parameter in y = cx4. This
kind of solution is called a singular solution.

System of Differential Equations

dx
dt = f(x, y)
dy
dt = g(x, y)

(1.5)

1.2 Initial value problem

1.2.1 IVP-first order, second order, ...

Recall the one parameter family of solutions. A DE must have appropriate
condition so that it can have unique solution. For example

Solve

xy′ + y = 1 subject to y(1) = 1

or

a(x)y′′ + b(x)y′ + c(s)y = d(x), with IC. y(0) = 1, y′(0) = 2.

Usually the number of conditions equals the order of DE.
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Example 1.2.1 (Interval of definition of solutions). You can verify y = 1/(x2+c)
is a solution of DE y′ + 2xy2 = 0. With I.C. y(0) = −1, you get y = 1/(x2 − 1).
Three cases arises:

• As a function, y = 1/(x2 − 1) is a function defined on the real line except
x = −1, 1.

• As a solution of ODE y′ + 2xy2 = 0, it can take any interval in (−∞,−1),
(−1, 1) or (1,∞) as the domain.

• As a solution of the IVP y′ + 2xy2 = 0, y(0) = −1, the interval should be
taken an interval in (−1, 1).

−1 1
x

y

1.2.2 First order linear equation

We consider the following.

y′ + p(x)y = q(x) (1.6)

Multiplying the integrating factor µ(x) to get

µ(x)y′ + µ(x)p(x)y = µ(x)q(x). (1.7)

Assume the following:

d

dx
(µ(x)y) = µ(x)y′ + µ′(x)y. (1.8)

Comparing with (2.8) we have

µ′(x) = µ(x)p(x) or
µ′(x)

µ(x)
= p(x). (1.9)
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Integrating this, we obtain

µ(x) = exp

(
∫ x

p(t)dt

)

. (1.10)

Subst. this into (2.9). Then by (2.8) we have

d

dx
(µ(x)y) = µ(x)q(x).

Thus integrating we obtain

µ(x)y =

∫ x

µ(t)q(t)dt+ C.

Now the solution is

y(x) =
1

µ(x)

[
∫ x

µ(t)q(t)dt+ C

]

or

y(x) = exp

(

−
∫ x

p(t)dt

)[
∫ x

e
∫ ξ p(t)dtq(ξ)dξ + C

]

Example 1.2.2. Solve IVP

y′ + 2xy = x

y(0) = 0.

Sol. We find the integrating factor and multiply it

µ(x) = e
∫
2xdx = ex

2

to get
ex

2
y′ + 2xex

2
y = xex

2
.

(ex
2
y)′ = xex

2

ex
2
y =

∫ x

tet
2
dt+ C =

1

2
ex

2
+ C,

y =
1

2
+ Ce−x2

Use IC. to get

y =
1

2
(1− e−x2

).
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1.2.3 Existence and Uniqueness

Example 1.2.3. [IVP can have several solutions] Find the solution of

y′ = 2y
1
2 (1.11)

y(0) = 0. (1.12)

Sol. By inspection, we find the following two solutions easily:

y(x) = 0, y(x) = x2.

Also, for any x0 > 0, the function

y =

{

0, 0 ≤ x < x0

(x− x0)
2, x ≥ x0

is a solution.

x0
x

y

Figure 1.1: Non unique solutions

Things to consider

(1) Existence

(2) Uniqueness

(3) Valid interval

Theorem 1.2.4. Existence and uniqueness If f(x, y) and ∂f
∂y are continuous on

D = (a, b)× (c, d) and if (x0, y0) ∈ D, then the solution of IVP

y′ = f(x, y) (1.13)

y(x0) = y0 (1.14)
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exists in a nhd x0 − h < x < x0 + h and the solution is unique.

x

y

y0

( )
(x0 − h, x0 + h)

Figure 1.2: Interval of existence

in the Example 1.2.3: f(x, y) = 2y
1
2 . Hence ∂f

∂y = y−
1
2 does not satisfy the

condition of the theorem.

Example 1.2.5. Find the solution of DE:

y′ = xy2

y(0) = 1.

Sol. y = 1
1−x2/2

is a solution. Since f(x, y) = xy2 and ∂f
∂y = 2xy are continu-

ous near x = 0, y = 1, this is the only solution. The interval of validity
is −

√
2 < x <

√
2.

Example 1.2.6. Solve

y′ + y
x−1 = 1

y(x0) = y0.

On (−100, 1) or on (1, 1010), p(x) = 1/(x − 1) is continuous, so it has a unique
solution there. Here y = x−1

2 + C
x−1 .

Example 1.2.7. Solve IVP and determine the interval where solution is valid.

xy′ + y = 2x,

y(3) = 2.
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Sol. Divide by x. Then y′ + 1
xy = 2 and µ(x) = elnx = x.

interval of y = x− 3
x

| |
−1 3

Thus we obtain

(xy)′ = 2x

xy = x2 + C

y = x+
C

x
.

It is valid on (0,∞) or (−∞, 0).
Since x 6= 0, x > 0. With IC.
y = x− 3

x .

Example 1.2.8. Solve the above problem with IC. changed to y(−1) = 2.

Sol. With the new IC, we see y = x− 3
x is the solution. But the valid interval

is now (−∞, 0).

Exercise 1.2.9. (1) Determine order of the following DE. Are they linear non-
linear ?

(a) x2y′′ + xy′ + y = 2

(b) x(y′)2 + sinx+ y = 2

(c) y′′ + y = sec x

(d) y′′ + cos(x+ y) = ex

(2) Find a solution of the form y = erx in the following.

(a) y′′ + 4y = 0

(b) y′′ + 5y′ + 4y = 0

(c) y′′ + 2y′ − 3y = 0
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(d) y′′′ − 4y′′ + 3y′ = 0

(3) Determine order of the following DE. Are they linear nonlinear ?

(a) uxx + kuyy = 0

(b) uux = uy

(c) c2uxx = ut

(d) uxxxx + 2uxxyy + uyyyy = 0

(4) Find a solution of the following.

(a) y′ + 2y = x

(b) y′ + 2xy = e−x2

(c) y′ + y = xex

(d) y′ − 1
xy = xex

(e) y′ − 2y = e2x

(f) xy′ + 2y = sinx

(g) y′ = 1
y e

x−y

(h) y′ + 1
xy = cos x

(5) Solve

(a) xy′ + 3y = x− 1, y(1) = 1

(b) (1− x)y′ + y = 1− x, y(0) = 1

(c) x2y′ − xy − 1 + 3
2x = 0, y(1) = 1

(d) y′ + 1
xy = sinx

x , y(π2 ) = 1

1.3 Mathematical Model

Many phenomena in the nature of engineering is expressed in terms of DE. The
processes are called (mathematical modelling)

Example 1.3.1. Velocity and acceleration

The position of a car running on a straight road is denoted by y(t)(t- time) The
velocity is ∆y/∆t. In general the instant velocity is v(t) = lim

∆t→0
∆y/∆t = dy/dt.

If velocity is given as 10t(m/sec) what is distance traveled for 5 min?
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Sol. We have
y′ = 10t

So
y = 5t2 + C

with y(0) = 0 the distance traveled 5 min is 5·52m = 125m. Acceleration
is a = dv/dt = d2y/dt2. Here 10(m2/sec).

Example 1.3.2. (Free fall)
The position of a falling object of mass m is denoted by y(t), velocity v, with
force f(t, y, y′), we have by Newton’s law

my′′(t) = f(t, y, y′)

Free fall: gravitational force g ignoring air resist we have v′ = y′′

my′′ = mg (1.15)

If g = 9.8m/sec2 what is the distance of falling for 20 sec?

Sol.
y′′ = 9.8

y′ = 9.8t+ C

Since v(0) = 0
y′ = 9.8t

Thus
y = 4.9t2 + C

y(0) = 0
y = 4.9t2

For 20 seconds 4.9× (20)2 = 1, 960m.

If the friction is considered we have y′′ = g − k(y′)2. Consider the fall of
parachute. It is experimentally known that the force by air resistance propor-
tional to the square of velocity. Hence we get by Newton’s second law

mv′ = mg − bv2,
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b constant depending on the Parachute. Since y′ = v, we obtain

y′′ = g − b

m
(y′)2. (1.16)

Example 1.3.3. [Population dynamics, Decay of isotope] The mass of an
isotope was 5 gram at a moment. After 3 min, it became 4 gram. Then let y(t)
be the remaining mass at t min. Write an equation of y(t). What is half life
?(The time that takes to reduce to half of the original amount.)

The decay rate dy
dt is proportional to the current amount.

dy

dt
= −ky (k > 0).

Here k is some constant dependent on the material. The solution is y(t) = Ce−kt.

Example 1.3.4. [Newton’s law of cooling]

dT

dt
= k(T − Tm).

Example 1.3.5. [Spread of disease] Let x(t) be the number of people who
have contracted the disease(say a flu) and y(t) be the number of people who have
not exposed. The rate of disease spread is proportional to xy because people
interact. So

dx

dt
= kxy.

Or if one infected person is introduced into a small community of n people, then
x+ y = n+ 1 so

dx

dt
= kx(n + 1− x).

Example 1.3.6. [Chemical Reaction] The molecules of a substance A decom-
pose into smaller molecules. The rate is prop. to the amount of first substance
not decomposed.

dX

dt
= kX

or
dX

dt
= k(a−X)(b−X)

Example 1.3.7. [Draining a Tank] Torricelli’s law: The speed of outflux of
water through a sharp edged hole at the bottom of a tank filled to a depth of h is
the same as the speed of the body would require in the free fall from the height
h: Thus,

dV

dt
= −Ah

√

2gh,

where Ah is the area of hole and h the height of water.
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Example 1.3.8. [Electric circuit]:
For a circuit with R (resistor) and L (inductor) only, the Kirchhoff law says

sum of voltage drop across the inductor L(di/dt) and the voltage drop
across the resistor iR is the same as the impressed voltage E(t). So the
system is described by

L
di

dt
+Ri = E(t).

Likewise, since the voltage drop across the capacitor with capacitance C
is q(t)/C, the circuit with R - C only is described by

Ri+
1

C
q = E(t). (1.17)

The current and charge q are related by i = dq/dt, we have

R
dq

dt
+

1

C
q = E(t). (1.18)

L

R

E(t)

RL-circuit

R

C

E(t)

RC-circuit

R

C

LE(t)

RLC-circuit

If the charge of the condenser is q(t), input voltage is E(t), then L di
dt = Lq′′

is added, so

Lq′′(t) +Rq′(t) +
1

C
q(t) = E(t).

Example 1.3.9. [Hanging Cable]: Let s be the length of the cable between y
axis to the point P , then the weight of the cable of the portion is ws and from
the relations

H = T cosφ, ws = T sinφ,
dy

dx
=

ws

T
.

Since ds
dx =

√

1 + (dydx)
2, we get

d2y

dx2
=

w
√

1 + (dydx)
2

T
.
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H ws

P b

T

x

y

O

φ

T cosφ

T sinφ

A = (0, y0)

This is a nonlinear second order equation.



Chapter 2

First order DE

2.1 Solution curves

2.1.1 Direction Fields and Integral Curves

Given a DE. y′ = f(x, y), a collection of direction vectors with slope f(x, y)
placed at (x, y) is called a direction field of the DE.

It is sometimes hard to find the solutions of a DE. It is helpful to draw the
tangent curves to the family of curves to determine the shape of solution.

C > 0

C < 0

Figure 2.1: Integral curves y = x2 + C

x2 and direction fields of y = x+ Ce−x

The (many) solutions of a DE. are called integral curves of the DE.

15



16 CHAPTER 2. FIRST ORDER DE

Example 2.1.1. The DE
y′ + y = x+ 1

has a general solution y = x+ Ce−x. Integral curves are given by left picture of
Figure 2.1.

Figure 2.2: Integral curves of y = Cex, y = x+ Ce−x

Example 2.1.2. Integral curves of

y′ =
x2

1− y

are y − y2

2 + C = x3

2 .

Example 2.1.3. The solution of xy′ + 2y = 4x2 is y = x2 + C
x2 and its integral

curves are as in left side of Figure 2.1.

Example 2.1.4. Draw direction fields of

(1) y′ + y = x+ 1

(2) xy′ + 2y = x2 + 1

(3) y′ + y2 = x+ 1

Sol. (1) right side of figure 2.1.
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2.1.2 Autonomous First order DEs

A DE. with no independent variable is called autonomous. An autonomous first
order DE can be give as F (y′, y) = 0 or in the followng forms

dy

dx
= f(y), (2.1)

or
dx

dt
= k(n+ 1− x),

dT

dt
= k(T − Tm).

2.1.3 Critical points

The zeros of f(y) in (2.1) is very important and called a critical point, sta-
tionary point, equilibrium point.

Example 2.1.5. The D.E. dP
dt = P (a − bP ) has equilibrium points P = 0 and

P = a/b. The behavior of solution near the Critical points are given in the table.

Interval Sign of f(P ) P (t) Arrow

(−∞, 0) minus dec. Down

(0, a/b) Plus Inc. Up

(a/b,∞) minus dec. Down

Table 1.

dP
dt

< 0

dP
dt

< 0

dP
dt

> 0

P

0

a/b

Figure 2.3: Phase plane
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Example 2.1.6. The autonomous D.E.

dy

dx
= (y − 1)2

has single critical point 1. The solution is given by y = 1 − 1/(x + c). The
solutions with IC’s y(0) = −1 (resp. y(0) = 2), are given by

y = 1− 1

x+ 1/2
on − 1

2
< x < ∞ (resp. y = 1− 1

x− 1
on −∞ < x < 1).

x

y

b
(0,−1)

y = 1

x

y

b(0, 2)

y = 1

Figure 2.4: Sol. with distinct I.C’s

Attractors and Repellers

Assume y(x) is a non constant solution of an autonomous DE and c is a critical
point of the DE. Basically four possibilities: As x → ±∞
(1) limx→±∞ y = c (point y moves towards c — attractor) -asymptotically

stable.

(2) point y moves away from c — repeller - unstable.

(3) point y moves towards c one side, and moves away from the other side —
neither attractor nor repeller - semi stable.

(4) point y moves towards c one side, and moves away from the other side —
neither attractor nor repeller - semi stable.

In the above example, y = 1 is semi stable.
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Translation property

If y(x) is a solution of auto DE dy/dx = f(y), then y(x− k) is also a solution for
any constant k.

2.2 Separable Equations

If a DE y′ = f(x, y) can be written in the form

dy

dx
=

g(x)

h(y)
,

it is said to be variable separable. We can set

g(x)dx = h(y)dy.

Integration gives
∫ x

g(x) dx =

∫ y

h(y)
dy

dx
dx+ C.

Example 2.2.1. Solve

dy

dx
=

sinx

1 + y2
.

Multiply (1 + y2)dx to get

(1 + y2)dy = sinx dx.

Integrating, we obtain

y +
y3

3
= − cos x+ C.

Example 2.2.2. Solve the IVP

dy

dx
=

3x2 + 2x

2y + 2
, y(0) = 1.
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Sol. Multiplying by 2y + 2 we obtain

(3x2 + 2x)− (2y + 2)
dy

dx
= 0.

Integrate
∫ x

(3x2 + 2x)dx−
∫ y

(2y + 2)dy = 0.

x3 + x2 − (y2 + 2y) = C

or
y + 1 = ±

√

x3 + x2 + C1.

Using the IC., we obtain y = −1 +
√
x3 + x2 + 4.

Losing a solution

Example 2.2.3. Solve
dy

dx
= y2 − 4.

Sol. Dividing by y2 − 4, we obtain

dy

y2 − 4
= dx or

1

4

[

1

y − 2
− 1

y + 2

]

dy = dx.

Integrate

ln

∣

∣

∣

∣

y − 2

y + 2

∣

∣

∣

∣

= 4x+ c.

Thus

y = 2
1 + ce4x

1− ce4x
.

From the RHS of the DE., we see y = ±2 are trivial equilibrium solution.
One of them y = 2 can be obtained as setting c = 0. But the other one
y = −2 cannot be obtained, we have lost it during the division. (This
solution corresponds to the case x → ∞).

To determine the constant C to get an unique solution we need some con-
dition, called initial condition (IC). A DE. with IC. is called initial value
problem (IVP).
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Example 2.2.4 (IVP). Solve

cos x(e2y − y)
dy

dx
= ey sin 2x, I.C. y(0) = 0.

Sol. Dividing by ey cos x, we get

e2y − y

ey
dy =

sin 2x

cos x
dx.

∫

(ey − ye−y)dy = 2

∫

sinx dx

and hence
ey + ye−y + e−y = −2 cos x+ C.

Using the I.C. we can get C = 4.

Exercise 2.2.5. (1) Solve DE.

(a) y′ + y2 cos x = 0

(b) (y + ey)y′ = x− ex

(c) xy′ = (1− y2)1/2

(d) y′ = x
1+2y

(e) y′ = x2

y2−4

(f) y′ = x3(1 + y2)

(g) yy′ = sinx

(h) dr
dθ = r sin θ

(i) (x ln x)y′ = y2

(j) xy′ = y3 + y2

(k) y′ cos y = 1

(l) dr = r tan θdθ

2.3 Linear Equations

2.3.1 IVP-first order, second order, ...

Examples of linear DE: xy′ + y = 1, y(1) = 1.

Example 2.3.1. First order linear differential equation:

a1(x)
dy

dx
+ a0(x)y = g(x) .

Dividing by a1(x) we obtain a normal(standard) form:

dy

dx
+ P (x)y = f(x) . (2.2)

Second order linear differential equation:

a(x)y′′ + b(x)y′ + c(x)y = d(x), y(0) = 1, y′(0) = 2.
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Homogeneous DE

If f ≡ 0 in (2.2), we say it is Homogeneous.

Example 2.3.2. Find the general solution of

dy

dx
+ P (x)y = 0. (2.3)

Sol. Multiply a function µ(x) to both sides of (2.3) to get

µ(x)y′ + P (x)µ(x)y = 0 .

Assume lhs is the derivative of µ(x)y. Then we see

d

dx
[µ(x)y] = µ(x)y′ + µ′(x)y = µ(x)y′ + P (x)µ(x)y (2.4)

and hence we have µ′(x)
µ(x) = P (x), i.e.,

µ(x) = e
∫
P (x)dx. (2.5)

Here µ(x)is called an integrating factor substituting into (2.4), we see

e
∫
P (x)dxy′ + P (x)e

∫
P (x)dxy = 0.

Thus
d

dx
(ye

∫
P (x)dx) = 0

and we obtain ye
∫
P (x)dx = C. Thus

y = Ce−
∫
P (x)dx.

Nonhomogeneous DE

Consider solving the following nonhomogeneous equation:

y′ + p(x)y = q(x) . (2.6)

We note that the solution consists of two parts: y = yc+yp, where yc is a solution
of the homogeneous DE:

y′ + p(x)y = 0 (2.7)
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and yp is any particular solution of (2.6). In fact,

(yc + yp)
′ + p(x)(yc + yp) = y′c + p(x)yc + [y′p + p(x)yp] = q(x).

The solution of the homogeneous DE is known previously as

yc = exp−
∫
p(x)dx .

Variation of parameters

Now we want to find a particular solution of (2.6) by a procedure called vari-
ation of parameters. Let yp = u(x)y1(x), where y1(x) any solution of the
homogeneous DE (2.7). Substitute it into (2.6) gives

u
dy1
dx

+ y1
du

dx
+ p(x)uy1 = q(x), or u

[

dy1
dx

+ p(x)y1

]

+ y1
du

dx
= q(x),

from which we get

y1(x)
du

dx
= q(x).

du

dx
=

q(x)

y1(x)
.

Integrating,

u(x) =

∫

du

dx
dx =

∫

q(x)

y1(x)
dx.

So

yp = exp−
∫
p(x)dx

∫

exp
∫
p(x)dx q(x)dx.

Integrating factor

We introduce another method. They are actually quite similar. Multiplying the
integrating factor µ(x) we get

µ(x)y′ + µ(x)p(x)y = µ(x)q(x). (2.8)

Assume the following:

d

dx
(µ(x)y) = µ(x)y′ + µ′(x)y. (2.9)

Comparing with (2.8) we have

µ′(x) = µ(x)p(x) or
µ′(x)

µ(x)
= p(x). (2.10)
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Integrating this we have

µ(x) = exp

(
∫ x

p(t)dt

)

. (2.11)

Subst. into (2.9). Then by (2.8) we have

d

dx
(µ(x)y) = µ(x)q(x).

Thus integrating

µ(x)y =

∫ x

µ(t)q(t)dt+ C

and solution is

y(x) =
1

µ(x)

[
∫ x

µ(t)q(t)dt+ C

]

or

y(x) = exp
(

−
∫ x

p(t)dt
)

[

∫ x
e
∫ ξ p(t)dtq(ξ)dξ + C

]

.

Caution: We note that this formula is valid only when the DE is given of the
form (2.6), i.e., the coeff. of leading term y′ is 1.

Example 2.3.3. Solve IVP

y′ + 2y = 1 (2.12)

y(0) = 1. (2.13)

Sol. Multiply µ(x) = e2x we have
d

dx
(e2xy) = e2x and we see

e2xy =
1

2
e2x + C.

y =
1

2
+ Ce−2x.

IC. y(0) = 1. Then C = 1
2 and so the solution is y = 1

2 +
1
2e

−2x.
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Example 2.3.4. Solve IVP

y′ + 2xy = x

y(0) = 0.

Sol. Integrating factor is
µ(x) = e

∫
2xdx = ex

2
.

ex
2
y′ + 2xex

2
y = xex

2

(ex
2
y)′ = xex

2
.

ex
2
y =

∫ x

tet
2
dt+ C =

1

2
ex

2
+ C,

y =
1

2
+ Ce−x2

.

Use IC. to get

y =
1

2
(1− e−x2

).

If IC. is changed to y(0) = 1
2 then C = 0 and solution is y = 1

2 .

Piecewise linear DE.- Discontinuous forcing term

Example 2.3.5. Solve IVP

y′ + y = f(x), y(0) = 0, where f(x) =

{

1, 0 ≤ x ≤ 1

0, x > 1.

Sol. I.F. is ex. Multiplying it we get

exy′ + exy = exf(x), or (exy)′ = exf(x).

Integrating,

exy(x) =

∫ x

0
exf(x)dx+ C1.

If x ≤ 1, then

exy(x) = ex + C1.
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With IC., we see C1 = −1.
y(x) = 1− e−x.

If x > 1,

exy(x) =

∫ 1

0
exdx+ C2 = e1 − 1 + C2,

so

y(x) = (e1 − 1 +C2)e
−x.

Using the continuity at x = 1, we get C2 = 0. Hence

y(x) =

{

1− e−x, 0 ≤ x ≤ 1

(e− 1)e−x, x > 1.

x

y

Figure 2.5: Sol. with discontinuous forcing

The error function

There are some important functions that are defined through integrals. Examples
are

erf(x) =
2√
π

∫ x

0
e−t2dt and erfc(x) =

2√
π

∫ ∞

x
e−t2dt (2.14)

We know that
∫∞
−∞ e−t2dt =

√
π/2.

Example 2.3.6. Solve
dy

dx
− 2xy = 2, y(0) = 1.

It is in normal form. So IF. is exp
∫ x(−2x). Mutiplying

e−x2 dy

dx
− 2xe−x2

y = 2e−x2 ⇒ d

dx
[e−x2

y] = 2e−x2
.

[e−x2
y]|x0 = 2

∫ x

0
e−t2dt ⇒ e−x2

y − y(0) = 2

∫ x

0
e−t2dt
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Hence

y = ex
2
+ 2ex

2

∫ x

0
e−t2dt

y = ex
2
[1 + 2

√
πerf(x)]

2.4 Exact Differential Equation

Recall: If f(x, y) is a differentiable function of two variables, then the differential
of f is

df =
∂f

∂x
dx+

∂f

∂y
dy.

Given the following form of 1-st order DE:

M(x, y)dx +N(x, y)dy = 0 . (2.15)

If this is an exact differential of some function, then it is called an exact differ-
ential equation. In other words, there exists a function u(x, y) s.t.

du =
∂u

∂x
dx+

∂u

∂y
dy = Mdx+Ndy = 0.

Hence the solution of the DE. (2.15) is u(x, y) = c. Thus, we must have

∂u

∂x
= M,

∂u

∂y
= N (2.16)

and differentiation of M w.r.t y and differentiation of N w.r.t x gives

∂2u

∂y∂x
=

∂M

∂y
,

∂2u

∂x∂y
=

∂N

∂x
.

If u ∈ C2 then by changing the order we must have

∂M

∂y
=

∂N

∂x
. (2.17)

This is a necessary condition (in fact, it is sufficient also for most cases) for the
DE (2.15) to be exact.

Integrating (2.16) gives

u =

∫

M(x, y) dx + C1(y)
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or

u =

∫

N(x, y) dy + C2(x) .

Plug either of them into the D.E. and find C1(y) or C2(x). Here the relation
u(x, y) = C gives an implicit form of solution y(x).

Theorem 2.4.1. Assume M,N, ∂M∂y , ∂N∂x are continuous on a rectangle region

a < x < b, c < y < d. Then necessary and sufficient condition for the DE.

M(x, y)dx+N(x, y)dy = 0

to be exact is

∂M

∂y
=

∂N

∂x
.

Example 2.4.2. Solve

(3x2y2 + y + cos x)dx+ (2x3y + x)dy = 0.

Sol. Let
M = 3x2y2 + y + cos x, N = 2x3y + x.

∂M

∂y
= 6x2y + 1,

∂N

∂x
= 6x2y + 1.

So this is exact. Hence

u =

∫

M dx =

∫

(3x2y2 + y + cosx)dx = x3y2 + xy + sinx+ g(y).

Here, g(y) is a function of y only. Differentiate w.r.t y we have

∂u

∂y
= 2x3y + x+ g′(y).

Since this must coincide with N , we have g′(y) = 0, g(y) = C. Thus the
solution is u = x3y2 + xy + sinx = C.

Example 2.4.3. Solve the DE.

esinx(1 + (x+ y) cos x)dx+ esinxdy = 0.
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Sol. Let M = esinx(1 + (x + y) cos x), N = esinx. Then it is exact since
My = Nx. So

u(x, y) =

∫

N(x, y)dy = yesinx + C1(x).

Differentiate w.r.t. x, we see that

y cos xesinx +C ′
1(x) = M = esinx(1 + (x+ y) cos x)

holds. So
C ′
1(x) = esinx(1 + x cos x).

Hence
C1(x) = xesinx + C2

u(x, y) = (x+ y)esinx + C2.

2.4.1 Integrating factor- Nonexact made exact

What to do when the DE. is not exact.

M(x, y)dx +N(x, y)dy = 0 . (2.18)

Can we make it exact? The answer is sometimes ‘yes’. Multiplying µ(x, y) to
(2.18) we get

µMdx+ µNdy = 0 . (2.19)

Assume this is exact, then we must have

(µM)y = (µN)x . (2.20)

We try to find such a function µ(x, y). Assume for simplicity µ is a function of x
only. Then

µMy = µxN + µNx

from which we obtain

dµ(x)

dx
=

(My −Nx)

N
µ(x) . (2.21)

Question: Is this solvable?

If the quotient
(My−Nx)

N is again a function of x only, then we can find µ(x).
The IF. in this case is

µ(x) = e
∫ (My−Nx)

N
dx.
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Similarly, when µ is a function of y only we have some chance of finding µ. So if

µyM + µMy = µNx

we obtain

dµ(y)

dy
=

(Nx −My)

M
µ(y) . (2.22)

If the quotient
(Nx−My)

M is again a function of y only, then we can find µ(y).

The IF. in this case is

µ(y) = e
∫ (Nx−My)

M
dy.

Example 2.4.4. The D.E. xydx + (2x2 + 3y2 − 20)dy = 0 is not exact. With
M = xy, N = 2x2 + 3y2 − 20, we find

My −Nx

N
=

x− 4x

2x2 + 3y2 − 20
=

−3x

2x2 + 3y2 − 20
.

But
Nx −My

M
=

4x− x

xy
=

3

y

is a function of y only. Thus IF is e
∫

3
y
dy

= y3. So multiplying by y3 the following
is exact.

xy4dx+ (2x2y3 + 3y5 − 20y3)dy = 0.

Answer is 1
2x

2y4 + 1
2y

6 − 5y4 = C.

2.5 Solution by substitutions

Homogeneous Equation

A function M(x, y) is said to be homogeneous equation if the total degrees
are the same in of all terms. Formally, M(x, y) is homogeneous if

M(tx, ty) = tnM(x, y)

for some n.
For example x3 + x2y + y3 or x2/y2 + x/y are homogeneous, but x2 + y/x is

not.

Similarly, if M(x, y) and N(x, y) are homogeneous, the following type of DE

M(x, y)dx+N(x, y)dy = 0
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is said to be homogeneous differential equation. Use the substitution y = ux
and dy = xdu+ udx to get

M(x, ux)dx +N(x, ux)(xdu + udx) = xn[M(1, u)dx +N(1, u)(xdu + udx)] = 0.

Thus

[M(1, u) +N(1, u)u]dx +N(1, u)xdu = 0 or
dx

x
+

N(1, u)du

M(1, u) +N(1, u)u
= 0.

Another view: Homogeneous equation of degree n is can be also written as

y′ = f
(y

x

)

. (2.23)

Use the substitution y = ux we see y′ = u′x+ u and hence

u′x+ u = f(u).

Thus
du

dx
=

f(u)− u

x
.

This is separable. So we can integrate it as

∫

du

f(u)− u
=

∫

dx

x
. (2.24)

Example 2.5.1. Solve

y′ =
y

x
+

x

y
, y(1) = 2.

Sol. Let y = ux, y′ = u′x+ u so that

u′x+ u = u+
1

u
.

uu′ =
1

x
.

Integrate
u2

2
= ln |x|+ C.

With IC., we see
y = x

√
2 ln x+ 4.
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Example 2.5.2.

y′ =
x2 + 3xy

x2
.

Sol. y = ux, f(u) = 1 + 3u Solution is

∫

du

1 + 3u− u
=

∫

dx

x
.

ln(1 + 2u) = 2 ln x+ C

and

1 + 2u = cx2, u =
cx2 − 1

2
.

So

y =
cx3 − x

2
.

Example 2.5.3. Solve

(x2 + y2)dx+ (x2 − xy)dy = 0.

Bernoulli equation

For real n the following DE.

dy

dx
+ P (x)y = f(x)yn

is called the Bernoulli equation. For n = 0, 1 it is linear.
Assume n 6= 0, 1. Divide by yn

y−n dy

dx
+ P (x)y1−n = f(x). (2.25)

Use w = y1−n we get
dw

dx
= (1− n)y−n dy

dx
.

Subst. into (2.25) we get

dw

dx
+ (1− n)P (x)w = (1− n)f(x).
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Example 2.5.4. Solve

x
dy

dx
+ y = x2y2.

Sol. Divide by x to get

y′ +
y

x
= xy2.

This is Bernoulli equation with n = 2, P (x) = 1
x . Set w = y−1 we obtain

dw

dx
− w

x
= −x.

The I.F. is e−
∫

1
t
dt = 1

x . So

w′

x
− w

x2
= −1,

(w

x

)′
= −1.

w

x
= −x+ c, y =

1

−x2 + cx
.

Reduction to separable equation

Solve dy
dx = (−2x+ y)2 + 7, y(0) = 0.

Sol. Let u = −2x+ y, the du/dx = −2 + dy/dx. So

du

dx
+ 2 = u2 − 7, y(0) = 0 or

du

dx
= u2 − 9.

This is separable.
du

(u− 3)(u+ 3)
= dx.

Exercise 2.5.5. (1) Find the solution.

(a) (x2 − 2xy + 1)dx + (3y2 − x2 + 2)dy = 0

(b) (xy2 + y)dx+ (x2 + x)dy = 0

(c) (ex sin y − 2y sinx)dx+ (ex cos y + 2cos x)dy = 0

(d) ( yx + 2)dx+ (ln x+ 1)dy = 0

(e) (9x2 + y − 1)dx + (4y + x)dy = 0

(f) y2dx+ 2xydy = 0

(g) (x+ 1)ex − ey − xey dy
dx = 0



34 CHAPTER 2. FIRST ORDER DE

(h) 3x2 + 2yy′ = 0

(i) 3x2(y + 2)2dx+ 2x3(y + 1)dy = 0

(j) (ex cos y + x+ y)dx+ (−ex sin y + x+ y)dy = 0

(k) dy
x − y

x2dx = 0

(l) (tan y + 3x2)dx+ x sec2 ydy = 0

(2) Given the following DE, answer the following question.

(y2 + 2xy)dx− x2dy = 0

(a) Show this is not exact.

(b) Multiply y−2 and show the resulting equation is exact and find the
solution.

(c) Is there any other solution?

(3) Given the following DE, answer the following question.

(5x2y + 6x3y2 + 4xy2)dx+ (2x3 + 3x4y + 3x2y)dy = 0

(a) Show this is not exact.

(b) Multiply xmyn and find m,n so that the resulting equation is exact
and find the solution.

Exercise 2.5.6. (1) The following is either homog. type or easily changed to
homog. type. Solve them.

(a) y′ = y−x
y−2x

(b) y′ = 4y−3x
x−y

(c) y′ = y−x−4
y+x−2(x = u−k, y = v−h)

(d) y′ = x+3y−5
x+y−1

(e) y′ = 3xy+y2

x2−xy

(f) y′ = y2+2xy
x2

(g) y′ = x2+xy+y2

x2

(h) y′ = x+3y
x−y

(i) y′ = y−x+5
2x−y+4

(j) y′ = y
x + x2 cos x

y (u = y/x)

(k) xyy′ = y2 − x2

(l) x2y′ = x2 − xy + y2

(m) xyy′ = x2 + y2

(n) xy′ − y = x2e
y

x

(o) xy′ = y + x3ex

y

(2) Use y = ux2 solve y′ = 2y
x + x cos

( y
x2

)

.
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(3) Solve
dx

dt
= −axy,

dy

dt
= −bx

If x(0) = x0, y(0) = y0 show that

ay2 − 2bx = ay20 − 2bx0

2.6 A Numerical Method

2.7 Linear Model

Example 2.7.1 (Bacteria Growth). Initially P0. After 1 min. the number is
3
2P0. Find the equation.

dP

dt
= kP, P = Cekt.

3

2
P0 = P0e

k ⇒ k = ln
3

2
= 0.4055 ⇒ P (t) = P0e

0.4055t.

Example 2.7.2 (half life of plutonium 239).

dA

dt
= kA, A = Cekt.

After 15 years, the plutonium decayed by 0.043%. Find half life.

A(15) = A0e
15k = 0.999574A0 ⇒ k =

1

15
ln 0.99957 = −0.00002867 ⇒ A(t) = A0e

−0.00002867t.

1

2
A0 = A0e

−0.00002867t ⇒ t =
ln 2

0.00002867
= 24, 180yrs.

Example 2.7.3. The D.E. dP
dt = P (a − bP ) has equilibrium points P = 0 and

P = a/b. The behavior of solution near the Critical points are given in the table.

Many phenomena in the nature of engineering is expressed in terms of DE.
The processes are called (mathematical modelling) If the position of free
falling object is denoted by y(if we ignore the friction) then y′′ = g, if the friction
is considered we have y′′ = g − k(y′)2

Example 2.7.4. [Population of dynamics, Decay of isotope] The mass of
an isotope was 5 gram at a moment. After 3 min, it became 4 gram. Then let
y(t) be the remaining mass at t min. Write an equation of y(t). What is half life
?(The time that takes to reduce to half of the original amount.)
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Sol. y(t) The decay rate dy
dt is proportional to the current amount.

dy

dt
= −ky (k > 0).

Here k is some constant dependent on the material. The solution is
y(t) = Ce−kt. To find C we use initial condition y(0) = 5 we obtain

y(t) = 5e−kt.

After 3 min. we see
4 = 5e−3k.

Hence k = −1
3 ln

4
5 and y(t) = 5e

t
3
ln 4

5 . Let the half life be denoted by
t0, then

y(t0) = 5e

t0
3

ln
4

5 =
5

2
.

Hence half life is t0 = 3 ln 1
2/ ln

4
5 .

Example 2.7.5. [Newton’s law of cooling]

dT

dt
= k(T − Tm).

2.8 Nonlinear Model

Example 2.8.1. [Spread of disease]

dx

dt
= kxy

or
dx

dt
= kx(n + 1− x).

Example 2.8.2. [Oscillating pendulum] A pendulum of mass m is attached
to a string of length ℓ. Let θ be the angle with vertical line. See figure 2.6 Find
equation of θ.
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θ

mgmg sin θ

mℓθ′′

ℓ

Figure 2.6: pendulum

Sol. The length of path of the pendulum is ℓθ. Acceleration along the path
is ℓθ′′. The force is by Newton’s law mℓθ′′. Gravitational force acting
tangentially is mg sin θ. Hence

mℓ
d2θ

dt2
+mg sin θ = 0 or

d2θ

dt2
+

g

ℓ
sin θ = 0.

This is nonlinear. When θ is small we use sin θ ∼ θ to have

d2θ

dt2
+

g

ℓ
θ = 0.

And its solution is

θ = C1 cos

√

g

ℓ
t+ C2 sin

√

g

ℓ
t.

Example 2.8.3. [Draining a Tank] Torricelli’s law: The speed of outflux of
water through a sharp edged hole at the bottom of a tank filled to a depth of h is
the same as the speed of the body would require in the free fall from the height
h: Thus,

dV

dt
= −Ah

√

2gh

where Ah is the area of hole and h the height of water.
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dP
dt

< 0

dP
dt

> 0

P

0

a/b

Figure 2.7: Logistic Curve

Example 2.8.4. [Logistic Equation] This is a particular form of a population
model. It is given as

dP

dt
= P (r − r

K
P ) ≡ P (a− bP ). (2.26)

Sol. Separation of variables. Write it as

dP

P (a− bP )
= dt.

(

1/a

P
+

b/a

a− bP

)

dP = dt.

1

a
ln |P | − 1

a
ln |a− bP | = t+ c

ln

∣

∣

∣

∣

P

a− bP

∣

∣

∣

∣

= at+ ac

P

a− bP
= c1e

at.

Hence its solution is

P (t) =
ac1e

at

1 + bc1eat
.

Use I.C P (0) = P0 to get c1.
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Figure 2.8: Chemical compound

Example 2.8.5. [Chemical reaction]

dX

dt
=

(

a− M

M +N
X

)(

b− N

M +N
X

)

= k(α −X)(β −X). (2.27)

dX

dt
= k (250 −X) (40−X)

Use separation of var.

− 1/210

250−X
dX +

1/210

40 −X
dX = kdt.

Integrating,

ln

∣

∣

∣

∣

250−X

40−X

∣

∣

∣

∣

= 210kt + C,
250 −X

40−X
= C2e

210kt.

Use the conditions X(0) = 0, X(10) = 30 we can get k and C2 and

X(t) = 1000
1− e−0.1258t

25 − 4e−0.1258t
.

2.9 Modeling with systems of first order DEs

Systems of DE

Consider two(or more) unknown functions x(t) and y(t) satisfying

dx
dt = g1(t, x, y)
dy
dt = g2(t, x, y).

(2.28)
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A Predator-Prey Model

Two different species of animals compete to survive with the same environment.
Suppose the first species(Prey) eats only vegetable, but the second one(Predator)
eats first species only.

For examples, wolves eat caribou(deers), sharks devour little fish, fox eats
rabbits. Let x(t) denote the number of foxes and y(t) denote the number of
rabbits.

dx
dt = −ax+ bxy = x(−a+ by)
dy
dt = dy − cxy = y(d− cy).

(2.29)

This is called Lotka-Volterra predator-prey model.

Competition Model

Two different species of animals compete to survive with the same environment.
But this time, nor Prey-Predator relation, but they eats the same resources(such
as food and space)

In absence of the other, the rate which each population grows is

dx

dt
= ax and

dy

dt
= cy. (2.30)

However, with the existence of the other species they have to compete for food
and spaces etc. So the equations becomes

dx
dt = ax− by
dy
dt = cy − dx.

(2.31)

Networks - RLC Circuit

Kirchhoff’s Voltage Law

Theorem 2.9.1 (Kirchhoff’s Voltage Law). The sum of all voltage drop in
the closed circuit is zero.

Example 2.9.2. [Electric circuit] If the charge of the condenser is Q(t), input
voltage is E(t), current I, R the voltage drop across the resistor is ER, then by
Ohm’s law we have

ER = RI. (2.32)

Let the voltage drop across the coil be EL. Then

EL = L
dI

dt
. (2.33)
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Figure 2.9: RLC-circuit

Also, with the charge in the condenser Q, the voltage drop across the con-
denser(capacitor) EC satisfies

EC =
1

C
Q.

Since the current is proportional to the rate of change of charge, we have dQ
dt =

I(t), thus,

EC =
1

C

∫ t

I(s)ds. (2.34)

Example 2.9.3. [RLC-circuit] The input voltage is E(t) the sum of (2.33),
(2.35), (2.35) must be equal to E(t). So we have

L
dI

dt
+RI +

1

C

∫ t

0
I(s)ds = E(t)

Taking derivative we get

LI ′′(t) +RI ′(t) +
1

C
I(t) = E′(t). (2.35)

Now find the solution with E(t) = E0 sinωt.
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Sol. First we need to find a particular solution. Let

Ip(t) = A cosωt+B sinωt (2.36)

and subt. it into equation (2.36) to get

A =
−E0S

R2 + S2
, B =

E0R

R2 + S2
. (2.37)

Here S = ωL− 1
ωC is the reactance. Simplify it

Ip(t) = I0 sin(ωt− δ). (2.38)

Here

I0 =
√

A2 +B2 =
E0√

R2 + S2
, tan δ =

S

R

and
√
R2 + S2 is called impedance. Now need general solution of homg.

eq. With two solutions λ1, λ2 of the char. eq.

λ2 +
R

L
λ+

1

LC
= 0

we have
Ih(t) = c1e

λ1t + c2e
λ2t.

Thus
I(t) = c1e

λ1t + c2e
λ2t + I0 sin(ωt− δ).

Interpretation: We see

λ1 =
−R+

√

R2 − 4L
C

2L
, λ2 =

−R−
√

R2 − 4L
C

2L
.

Since the real part of λ1, λ2 are both negative, as time passed Ih(t) approaches 0
and I(t) approaches Ip(t). Ih(t) is called the transient solution, Ip(t) is called
the steady-state solution.

Example 2.9.4. R = 10(ohms), L = 1(henry), C = 100−1(farad) RLC- E(t) =
− cos 20t. I(0) = 0, I ′(0) = 0 I(t).
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Sol. From (2.36) we see

I ′′ + 10I ′ + 100I = 20 sin 20t

and since

S = ωL− 1

ωC
= 20− 100

20
= 15

we have

A =
−20 · 15
102 + 152

= −12

13
, B =

20 · 10
102 + 152

=
8

13
.

Hence

Ip(t) = −12

13
cos 20t+

8

13
sin 20t

and from λ2 + 10λ+ 100 = 0, λ = −5± 5
√
3i, the homog. solution is

I(t) = c1e
−5t cos 5

√
3t+ c2e

−5t sin 5
√
3t− 12

13
cos 20t+

8

13
sin 20t.

Using the IC.,

I(0) = c1 − 12
13 = 0

I ′(0) = −5c1 + 5
√
3c2 +

160
13 = 0

from which we obtain c1 =
12
13 , c2 = − 20

13
√
3
.

Exercise 2.9.5. (1) (a) L = 10, R = 20, C = 0.01, E = 10 sin 100t, I(0) =
I ′(0) = 0

(b) L = 0.1, R = 20, C = 0.001, E = 10, I(0) = I ′(0) = 0

(c) L = 2, R = 10, C = 0.1, E = 15, I(0) = 10, I ′(0) = 0

(2) The displacement of spring attached to ceiling with friction accounted is
given by

mu′′ + γu′ + ku = F (t).

Find solution when

(a) m = 10, γ = 0.01, k = 2.5, F (t) = 1, u(0) = u′(0) = 0

(b) m = 0.5, γ = 0.2, k = 10, F (t) = sin t, u(0) = u′(0) = 0

(c) m = 0.1, γ = 1, k = 10, F (t) = 0, u(0) = 2, u′(0) = 0


